

External Reliability Evaluation Report

Qualification of subcontractor TSHT for products assembled in TSSOP8 package - GPA

General Information

Product Line 0158, 0922, 3702

Low power dual op-amps,

Product Description Rail-to-rail dual op amp,

P/N LM2904PT, TS922IPT,

Product Group TS3702IPT AMS

Product division GPA&RF
Package TSSOP8

Silicon Process technology Bipolar, HF2CMOS, HC1PA

	Locations
Wafer fab	Ang Mo Kio 6"

Assembly plant TSHT (TianShui Huatian Technology) China

Reliability Lab Grenoble

DOCUMENT INFORMATION

Version	Date	Pages	Comment
1.0	30-Aug-2019	12	First issue

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	3
	GLOSSARY	
	RELIABILITY EVALUATION OVERVIEW	
_	3.1 OBJECTIVES	
	3.2 CONCLUSION	
4	DEVICE CHARACTERISTICS	4
	4.1 DEVICE DESCRIPTION	4
5	CONSTRUCTION NOTE	7
	TESTS RESULTS SUMMARY	8
	6.1 Test vehicle	8
	6.2 TEST PLAN AND RESULTS SUMMARY	8
7	ANNEXES	9
	7.1 DEVICE DETAILS	9
	7.2 Tests Description	11

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
AEC-Q100	Stress test qualification for automotive grade integrated circuits
AEC-Q101	Stress test qualification for automotive grade discrete semiconductors
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
PCB	Printed Circuit Board
SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

The objective of this evaluation is to qualify the subcontractor TSHT for the assembly of selected product in TSSOP8 package.

The line under qualification will serve several part numbers.

The qualification plan is based on the similarity and based on the JESD47 specification.

Here below are the details of the change depending on the affected product.

From ST Bouskoura to TSHT (see annex for product list)

Material	Current process	Modified process	Comment				
Diffusion location		No change					
Assembly location	ST Bouskoura	TSHT					
Molding compound	Sumitomo G630AY	CEL-9220HF10					
Die attach	Ablestick 8601-S25	Henkel 8200T					
Lead-frame	Copper	Copper					
Wire	Copper 1 mil	Copper 1 mil Pd coated					
Plating	NiPdAgAu	Sn					
MSL	1	1					

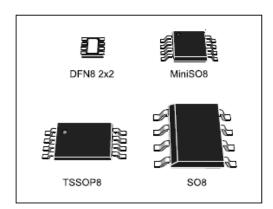
3.2 Conclusion

Qualification Plan requirements will be fulfilled without exception. It is stressed that reliability tests have to show that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests must demonstrate the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

Preliminary qualification results in line with expectation.

Reference: W836-TSHST TSSOP8-1

4 DEVICE CHARACTERISTICS


4.1 Device description

LM158, LM258, LM358

Low-power dual operational amplifiers

Datasheet - production data

Features

- Frequency compensation implemented internally
- Large DC voltage gain: 100 dB
- Wide bandwidth (unity gain): 1.1 MHz (temperature compensated)
- Very low supply current per channel essentially independent of supply voltage
- Low input bias current: 20 nA (temperature compensated)
- Low input offset voltage: 2 mV
- Low input offset current: 2 nA
- Input common-mode voltage range includes negative rails
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0 V to (V_{cc}⁺ - 1.5 V)

Related products

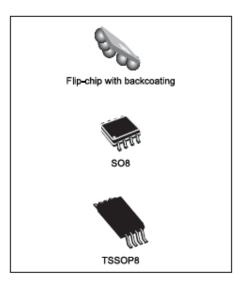
See LM158W for enhanced ESD ratings

Description

These circuits consist of two independent, highgain, internally frequency-compensated op amps, specifically designed to operate from a single power supply over a wide range of voltages. The low-power supply drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits, which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard 5 V, which is used in logic systems and will easily provide the required interface electronics with no additional power supply.

In linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.



TS922, TS922A

Rail-to-rail, high output current, dual operational amplifier

Datasheet - production data

Features

- · Rail-to-rail input and output
- Low noise: 9 nV/√Hz
- Low distortion
- High output current: 80 mA (able to drive 32 Ω loads)
- High-speed: 4 MHz, 1 V/μs
- Operating from 2.7 to 12 V
- Low input offset voltage: 900 μV max. (TS922A)
- ESD internal protection: 2 kV
- Latch-up immunity
- · Macromodel included in this specification
- Dual version available in Flip-chip package

Applications

- · Headphone and servo amplifiers
- Sound cards, multimedia systems
- · Line drivers, actuator drivers
- Mobile phones and portable equipment
- · Instrumentation with low noise as key factor
- Piezoelectric speaker drivers

Description

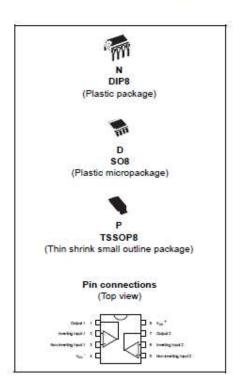
TS922 and TS922A devices are rail-to-rail dual BiCMOS operational amplifiers optimized and fully specified for 3 V and 5 V operation. These devices have high output currents which allow low-load impedances to be driven.

Very low noise, low distortion, low offset, and a high output current capability make these devices an excellent choice for high quality, low voltage, or battery operated audio systems.

The devices are stable for capacitive loads up to 500 pF.

TS3702

Micropower dual CMOS voltage comparators


Features

- Push-pull CMOS output (no external pull-up resistor required)
- Extremely low supply current: 9μA typ / comparator
- Wide single supply range: 2.7V to 16V or dual supplies (±1.35V to ±8V)
- Extremely low input bias current: 1pA typ
- Extremely low input offset currents: 1pA typ
- Input common-mode voltage range includes GND
- High input impedance: 10¹²Ω typ
- Fast response time: 2µs typ for 5mV overdrive
- Pin-to-pin and functionally compatible with bipolar LM393

Description

The TS3702 is a micropower CMOS dual voltage comparator with extremely low consumption of 9μA typ / comparator (20 times less than bipolar LM393). The push-pull CMOS output stage allows power and space saving by eliminating the external pull-up resistor required by usual open-collector output comparators.

Thus response times remain similar to the LM393.

5 CONSTRUCTION NOTE

	New Plant Qualification					
	P/N LM358IPT	PN/TS922IPT	PN/TS3702IPT			
	Wa	fer/Die fab. informa	ation	-		
Wafer fab		ST	Singapore			
manufacturing location						
Technology	Bipolar	HF2CMOS	HC1PA			
Process family	Bipolar	BiCMOS2	CMOS			
Die finishing back side	Raw Silicon	Raw Silicon	Lapped silicon			
Die size	1070 x 1010 µm ²	1720x1190µm²	1366x1136µm²			
Passivation type	SiN (nitride)	PVAPOX+Nitride	PVAPOX+Nitride			
Assembly info	ormation					
Assembly site		SC-Tianshui I	Huatian-China (TSHT)			
Package description		-	TSSOP8			
Molding compound		Hitachi	CEL-9220HF10			
Frame material			Copper			
Die attach process			Glue			
Die attach material		Hei	nkel 8200T-			
Wire bonding process			Wire			
Wires bonding		1.	0mil PdCu			
materials/diameters						
Lead finishing process	Copper					
Lead finishing/bump	Sn					
solder material						
Final testing in	formation					
Testing location						
	SC-Tiansh	nui Huatian-China (T	SHT) 999L			

6 TESTS RESULTS SUMMARY

6.1 Test vehicle

Lot #	Diffusion Lot	Assy Lot	Trace Code	Process/ Package	Product Line	Comments
1				TSSOP8	0158	
2				TSSOP8	0922	
3				TSSOP8	3702	

Detailed results in below chapter will refer to P/N and Lot #.

6.2 Test plan and results summary

							Fail	lure/SS		
Test	PC	Std ref.	Conditions		Steps	Lot 1 0158	Lot 2 0922	Lot3 3702		Note
HTB/		JESD22			168 H	78	0/78	0/78		
HTOL	N	A-108	Ta = 150°C, BIAS		500 H	78	0/78	0/78		
11102		71 100			1000 H	78	78	0/78		
					168 H	0/78	0/78	0/78		
HTSL	N	JESD22	Ta = 150°C		500 H	0/78	78	0/78		
11102	14	A-103	14 = 150 0		1000 H	78	78	0/78		
Package	Orie	nted Tests								
PC		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Over Reflow @ Tpeak=260°C 3 times		Final	PASS	PASS	PASS		
UHAST	Υ	JESD22 A-102	Pa=2Atm / Ta=121°C		96 H	0/78	0/78	78		
		IECD00			100 cy	0/78	0/78	78		
TC	Υ	JESD22 A-104	Ta = -65°C to 150°C		500 cy	0/78	0/78	78	,	
		A-104			1000cy	,	0/78		,	
		JESD22			168 H	0/78	0/78	0/78		
THB	Υ	A-101	Ta = 85°C, RH = 85%, BIAS		500 H	0/78	0/78	0/78	,	
		A 101			1000 H	78	78	78		

7 ANNEXES

7.1 Device details

7.1.1 Package outline/Mechanical data

			Dime	nsions			
Ref.		Millimeters		Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.2			0.047	
A1	0.05		0.15	0.002		0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.008	
D	2.90	3.00	3.10	0.114	0.118	0.122	
Е	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.177	
е		0.65			0.0256		
K	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1			0.039		
O,25 mm O10 Inch CAGE PLANE							
PIN 1 IDENTIFICATION							

7.1.2 Shear test results

Value in grams

		Ball S	Shear	Pull test				
	Max	Min	Average	Cpk	Max	Min	Average	Cpk
0158	43.33	38.72	40.76	3.02	15.72	12.15	14.19	2.77
0922	36.37	30.07	33.67	3.63	13.64	10.89	12.79	4.38
3702	34.42	32.38	33.4	2.61	14.46	12.11	13.23	3.43

7.2 Tests Description

Test name	Description	Purpose
Die Oriented		
HTOL Higt Temperature Operating Life HTB High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	
HTSL High Temperature Storage Life	the max. temperature allowed by the	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress- voiding.
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in early life.
Package Oriented		
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)		To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other		
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	